

Maths

Number and Place Value

Need a coherently planned sequence of lessons to complement this resource?

See our Number and Place Value Steps to Progression document.

Cowniting in

 Powers off Ten
Aim

- To count in steps of powers of ten.

Success Criteria

- I can identify the value of each digit in a number.
- I can identify which digit will change when adding or subtracting a power of 10.
- I can count forwards and backwards in steps of powers of 10.

Remember It

Choose each digit once to complete the number statements.

9	8	7	>	0	4	5	6	>	2	3
0	2	3	$<$	9	8	7	6	>	4	5
9	8	7	$>$	0	2	3	4	>	5	6

Powers of 10

What is a power of 10 ?

Look at this pattern:

$$
\begin{aligned}
10^{1} & =10 \\
10^{2} & =100 \\
10^{3} & =1000
\end{aligned}
$$

What do you notice?

Powers of 10

$$
\begin{gathered}
10^{1}=10 \\
10^{2}=100 \\
10^{3}=1000
\end{gathered}
$$

The small digit next to each 10 is called the index number, or the power.

It tells you how many times you should multiply the given number by itself - the given number in this case is 10 , as we are looking at powers of 10.

We read the calculations as ' 10 to the power of'. For example, 10^{1} is ' 10 to the power of 1 ' and 10^{2} is ' 10 to the power of 2 '. Sometimes, we say '10 squared' instead of '10 to the power of 2 '.

Powers of 10

$$
\begin{gathered}
10^{1}=10 \\
10^{2}=100 \\
10^{3}=1000
\end{gathered}
$$

Powers of 10

$$
\begin{gathered}
10^{1}=10 \\
10^{2}=100 \\
10^{3}=1000
\end{gathered}
$$

Powers of 10

$$
\begin{gathered}
10^{1}=10 \\
10^{2}=100 \\
10^{3}=1000
\end{gathered}
$$

Powers of 10

Powers of 10

When each power increases by one, the total amount is ten times the size of the last number. When a number is ten times the size, it moves one place to the left on a place value grid.

Millions	Hundred thousands	Ten thousands	Thousands	Hundreds	Tens	Ones
					1	0
			1	0	0	0
0	1	0	0	0	0	0
1	0	0	0	0	0	0

Adding and Subtracting

When we add or subtract different powers of 10 , we start by identifying the correct digit in the number.

Let's look at an example.
Add 1000 to 45689.

We need to identify the digit in the thousands place, because we are adding 1000.

Which digit is in the thousands place in $\mathbf{4 5 6 8 9}$?

Adding and Subtracting

By using a place value grid, we can check which digit is in the thousands place.

Millions	Hundred thousands	Ten thousands	Thousands	Hundreds	Tens	Ones
		4	5	6	8	9

Adding and Subtracting

In 45 689, the 5 is in the thousands place.

Millions	Hundred thousands	Ten thousands	Thousands	Hundreds	Tens	Ones
		4	5	6	8	9

Adding and Subtracting

In 45 689, the 5 is in the thousands place.

So, to add 1000, we simply add 1 to the thousands digit.
Can you say what 45689 add 1000 is?

45689 add 1000 is 46689.
We added 1 to the thousands digit.

Adding and Subtracting

Now let's look at this example:
Subtract 100 from 456721.
First, we identify the digit in the hundreds place.

Millions	Hundred thousands	Ten thousands	Thousands	Hundreds	Tens	Ones
	4	5	6	7	2	1

Adding and Subtracting

Now let's look at this example:
Subtract 100 from 456721.
We can see that the 7 is in the hundreds place.

Millions	Hundred thousands	Ten thousands	Thousands	Hundreds	Tens	Ones
	4	5	6	7	2	1

Adding and Subtracting

Now let's look at this example: Subtract 100 from 456721.						
WillionsHundred thousands	Ten thousands	Thousands	Hundreds	Tens	Ones	
	4	5	6	7	2	1

Adding and Subtracting

Now let's look at this example:
Subtract 100 from 456721.
So the answer to this calculation is 456621.

Millions	Hundred thousands	Ten thousands	Thousands	Hundreds	Tens	Ones
	4	5	6	6	2	1

Adding and Subtracting

The table below shows calculations involving adding and subtracting powers of 10 .
Choose 2 of the calculations and solve them.
You can use a place value chart to identify the correct digit.

Adding and Subtracting

Check your answers.
How did you get on?

Forwards and Backwards

We can use our understanding of adding and subtracting powers of 10 in order to count in steps of powers of 10.

Let's use one of the examples from the table we just worked with:
76430 + $10=76440$

We can continue adding 10 to 76440 to count on in steps of 10 . Can you find the next three numbers if we continue to count on in 10 s?

If we continue to count forwards in steps of 10, the next three numbers are: $\mathbf{7 6 4 5 0 , 7 6 4 6 0}$ and 76470.

Forwards and Backwards

$$
76 \text { 430, } 76 \text { 440, } 76 \text { 450, } 76 \text { 460, } 76470 . . .
$$

So far we have just changed the digit in the tens place.

If we keep on counting forwards in steps of 10, we will eventually cross over into the next set of hundreds and the digit in the hundreds place will change.

Can you keep counting in steps of 10 until you cross over into the next set of hundreds?

Forwards and Backwards

$76430,76440,76450,76460,76470,76480,76490,76500 \ldots$

Once we have crossed over into the next set of hundreds, we can just keep on counting in steps of 10 by simply changing the tens digit again.
... 76 510, 76 520, 76 530, 76540 ...

Forwards and Backwards

This process is just the same when we count backwards in steps of powers of 10 .

Let's try this one:
Starting at 586 271, count backwards in steps of 10000.

Remember, first identify the digit in the ten thousands place. You can then take one 10000 off the number by making the ten thousands digit one less each time.

Take care when crossing over into the next set of hundred thousands!

Forwards and Backwards

How did you do?

586 271, 576 271, 566 271, 556 271, 546 271, 536271, 526 271, 516 271, 506 271, 496 271, 486 271...

Which Power of 10?

Look at each of these sequences. Can you identify in which power of 10 each sequence is counting forwards or backwards?

5 784, 5 884, 5 984, 6 084, 6 184, 6 284...

234 681, 224 681, 214 681, 204 681, 194 681, 184 681...

89 635, 89 625, 89 615, 89 605, 89 595, 89 585, 89 575...

3226 764, 3326 764, 3426 764, 3526 764, 3626 764, 3726 764...

Which Power of 10 ?

Did you identify the correct direction and power of 10 for each sequence?
\square
5 784, 5 884, 5 984, 6 084, 6 184, 6 284...
Forwards in 100s.

234 681, 224 681, 214 681, 204 681, 194 681, 184 681...
Backwards in 10 000s.

89 635, 89 625, 89 615, 89 605, 89 595, 89 585, 89 575...
Backwards in 10s.
3226 764, 3326 764, 3426 764, 3526 764, 3626 764, 3726 764... Forwards in 100 000s.

Counting Maze

Move through the maze on your Counting Maze Activity Sheet by counting forwards and backwards in steps of powers of 10.

Diving into Mastery

Dive in by completing your own activity!

Giant Number Order

Your group has got 3 sets of Giant Number Cards. Unfortunately, the 3 sets are all messed up!

Each set of giant number cards shows a sequence created by counting in different powers of 10.

You need to sort the giant number cards into the 3 different sets, then put each set in order.

Aim

- To count in steps of powers of ten.

Success Criteria

- I can identify the value of each digit in a number.
- I can identify which digit will change when adding or subtracting a power of 10.
- I can count forwards and backwards in steps of powers of 10.

